

Providing Technical Support to EU Delegation to Trinidad and Tobago to organise and implement the Clean Energy Conference aiming at providing EU Expertise in the field of Sustainable Energy

Caribbean – GT#31/CSEE-EUDTT

EU Technical Assistance Facility (TAF) for SE4All Initiative

Trinidad and Tobago Sustainable Energy 2021/2030 Roadmap

8 June 2017

Presented by: loannis Stefanou

Senior Non-Key Expert in Renewable Energy and Development Cooperation <u>i.stefanou@revellegroup.eu</u>

Energy Intensity of TT and selected countries

Energy use (thousand kg of oil equivalent per capita)

Source: The World Bank, IEA statistics

TT has by far the highest energy intensity of all the oil and gas producing countries examined, including Gulf, EU countries and USA

Declining oil and gas reserves

Gas production history (billion cubic meters)

Oil and condensate production history (barrels of oil per day)

Source: BP statistical review of world energy, 2016

- In the last 13 years country's proved natural gas reserves decrease by an average of a 1 tcf/ year.
 - High energy consumption depletes rapidly country's fossil fuel reserves to the detriment of the economy and the society

The case study of the Norwegian Oil Fund

- Norway has the 21st largest oil reserves and the 16th largest natural gas reserves in the world
- Basic principle: development and production must result in maximum value creation for society
- Oil Fund established on 1 January 1985
- The sucess is not only of high levels of petroleum revenue, but due to chanelling government revenue straight into the fund and investing abroad
- The Fund invests in real estate, stock markets, oil and gas renewables, IT, etc.

• As of March 2017 its total valuation is ~ USD 900 billion USD

Figure: The net government cash flow from petroleum activities in billion 2017-NOK

(Source: The Ministry of Finance)

- More than 50% of Oil and Gas revenues in 2017 comes from the Fund and not taxes, royalties, dividends, etc.
- Norway in 2016 generated over 99% of its total electricity from Renewables

Electricity sector subsidies and opportunity costs

1% of GDP annually !

Forecasted demand

Source: IDB, author's estimates

Forecasted annual growth rate 3-5% annually

Between 2020 and 2023 new generation capacity will be required

Long term energy vision for the country

Important questions need to be answered by policymakers:

- **Question 1:** When and what extent introduce EE?
- **Question 2:** When and what extent introduce RES?
- **Question 3:** Upgrade existing OCGT units to CCGT?
- **Question 4:** Build a new CCGT plant at 2022-2023?
- **Overarching question:** What is the optimum mix of RES, EE, NG?

A combination of options and technological solutions will be required
A series of policy decisions have to be made soon and proactively

Definition of policy objectives

- Develop a Sustainable Energy Roadmap to achieve the following policy targets:
 - Target for 10% of electricity generation coming from RES by 2021
 - Target of GHG emission reduction targets by 15% by 2030
- Additional policy objectives for developing the Roadmap:
 - Fostering economic diversification
 - Contribute in economic growth and employment creation
 - Consistency with country's Innovation Policy
- Focus primarily on RES and EE focusing on the power sector, dealing also with the residential and industrial sectors

Barriers for deploying RES/EE in TT

- **KES/EE** are inextricably related to a series of policy choices
- **X** Low electricity prices create distortions
- X Lack of necessary legal and regulatory environment
- **×** Legal complexities (PPAs, take or pay terms of existing contracts)
- X Lack of institutional capacities
- X Land availability and ownership for RES utility scale projects
- X Lack of awareness among population and private sector

An essential question that the Roadmap tries to reply is this:

"What needs to be done to overcome those barriers and enable the environment for fostering Renewables and Energy Efficiency?"

Methodology for Roadmap Development

Policy challenges for RES

- The RES target should be expressed clearly as a percentage of nominal installed capacity (and not peak capacity)
- The target of 2021 refers to 195 MW of installed RES capacity.
- A clear vision for renewables could be set up to 2030.
- Questionable whether the RES target is fully achievable.
- Emphasis at this stage should be placed on enabling the environment

Renewable Energy Costs

Latest utility scale PPA auction prices (USD/kWh)

- Wind and solar have witnessed huge decrease in costs over the last years
- Renewables and especially PV are already competitive compared to the true cost of electricity in TT

Long term RES targets for TT

Installed RES capacity (MWp)

A target of 15% RES installed capacity by 2030 (283 MW) seems to be both cost-efficient and fully feasible

Feasibility of RES Technologies for TT

- Large scale PV is highly competitive. Even medium utility scale PV plants (20-60MW) can be highly competitive taking into consideration the very high solar potential of TT
- Onshore Wind Energy is a cost effective technology for TT in general. Detailed site measurements are required.
- Waste to Energy appears to be an expensive technology. Nonetheless, this is the case only when seen as a power generation technology and not as part of a wider waste management strategy.
- Introduction of residential and small scale commercial PV is relatively more expensive when compared to utility scale PV. However, it increases awareness and engages people at low cumulative costs.
- Other technologies such as tidal and ocean are currently at less commercially viable than other technologies but need to be assessed in detail

Optimum RES penetration scenario per technology

Considerations for determining options:

Achievement of policy targets CAPEX	Least cost to serve	Policy considerations
--	---------------------	-----------------------

Technology	2017	2021	2030	Share
PV	0	137	198	
PV utility scale (>10MW)	0	109	158	70%
PV small scale (5kW>, <20kW)	0	14	20	
PV residential (<5kW)	0	14	20	
Wind	0	41	57	20%
Waste to Energy	0	20	28	10%
Total	0	195	283	

To installed 15% of RES capacity by 2030 will require between 500 and 600 US million

The RES mix is dominated by solar 70% and to a lesser extent wind and waste

Energy Efficiency - Generation side

- EE upgrades in the generation side can lead to **significant fuel savings**
- There is no incentive to IPPs to proceed with these upgrades as there is no mechanism to recollect this amount.
- Part of this cost can be recovered by fuel savings and sales of NG to the international market
- Detailed feasibility studies need to be carried out
- The 2 mechanisms that could finance pass these upgrades inevitably pass part of upfront costs to consumers (like any other option):
 - 1. The 150% allowance scheme (implicitly)
 - 2. Increase of electricity tariffs to respective levels (explicitly)

Energy Efficiency - Consumption side

- **Potential of at least 10 % of savings** in the demand side up to 2022
- Focus is primarily in the residential sector, but also in the industrial and commercial sector (essentially hotels)
- Target achievement entails large behavioral change from consumers
- Initial estimates of the overall CAPEX costs can be up to 300-400 US million from all sectors (residential, hotels, industrial)
- EE measures should be partially financed by the government, while the existing measures appear to be insufficient
- Existing low electricity prices main hindrance for the promotion of EE measures

Energy Efficiency – Consumption Side

	Residential	Hotels	Industrial	TOTAL
Required CAPEX, US\$ million	413*	2	9	424 million US
Aggregate Energy Savings, GWh	930	10	33	973 GWh
CO2 Emissions avoided, kt	651	7	23	681 kt CO2

Source: IDB, author's estimates

* CAPEX costs for the residential sector are very rough estimates based on benchmarking data for the required investments per avoided MWh of electricity due to interventions

 The investment of ~400 million could lead to energy savings of approximately 1 TWh of electricity by 2022 according to rough estimates

Combination of options

Enabling the environment for RES/EE - Next steps

Overall Conclusions

- Both RES/EE lead to significant fuel and financial savings, stimulate economic growth and create employment
- Large scale RES plants can be in operation by 2019
- Promotion of EE measures can and should be a constant process
- A series of **concrete actions** are required to enable the environment
- With sufficient commitment many of these actions can be completed by the end of 2018
- Roadmap of the Roadmap:

EU Technical Assistance Facility for the "Sustainable Energy for All" Initiative

Brussels Project Office

4 Rue de la Presse Bureau No 14 (1st floor) 1000 Brussels, Belgium

Tel.: +32 (0)2 22 71 124 (direct) Tel.: +32 (0)2 22 71 164 (direct) Fax: +32 (0)2 22 72 780 E-mail: <u>t.lefevre@ceerd.net</u>

Thank you for your kind attention